The world stands to lose 6 percent of its wheat crop for every Celsius that the temperature increases, according to a recent study.

Researchers, led by a Florida scientist, found that the world could lose one fourth of the annual global wheat trade, which reached 147 million tons in 2013, for every Celsius increase. They used a computer model approach to reach the finding of temperature increases and wheat production.

"We started this with wheat, as wheat is one of the world's most important food crops," Senthold Asseng, who led the study, said in a statement. "The simulations with the multi-crop models showed that warming is already slowing yield gains, despite observed yield increases in the past, at a majority of wheat-growing locations across the globe."

Global food production needs to grow 60 percent by 2050 to meet the projected demand from an anticipated population of more than 9 billion people. That's a huge agricultural challenge, complicated by temperature increases due to climate change, Asseng said.

By pooling models, as part of the global Agricultural Model Intercomparison and Improvement Project (AgMIP), scientists found they can better predict the impact of warmer temperatures on wheat yield, said Asseng, an Institute of Food and Agricultural Sciences faculty member.

Asseng led a group of 50 scientists from 15 countries who devised an ensemble of computer models to increase the accuracy of their predictions. They worked with 30 wheat crop models and tested them against field experiments. In those experiments, average season temperatures ranged from 15 to 32 degrees Celsius, or 59 to 89.6 degrees Fahrenheit.

The ensemble of models consistently simulated crop temperature responses more accurately than did any single model.

In the past 100 years, global temperatures have risen by more than 0.6 degrees and are projected to increase by 2 to 4 degrees Celsius by the end of the century, according to the International Panel on Climate Change.

New heat-tolerant wheat cultivars and crop management are needed to counteract the projected yield decline, and crop models will play a major role in developing new research strategies for that, said Asseng.

The findings are detailed in the journal Nature Climate Change.